Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Int J Infect Dis ; 134: 154-159, 2023 Jun 14.
Article in English | MEDLINE | ID: covidwho-20240009

ABSTRACT

OBJECTIVES: Underlying immunodeficiency has been associated with worse clinical presentation and increased mortality in patients with COVID-19. We evaluated the mortality of solid organ transplant (SOT) recipients (SOTR) hospitalized in Spain due to COVID-19. METHODS: Nationwide, retrospective, observational analysis of all adults hospitalized because of COVID-19 in Spain during 2020. Stratification was made according to SOT status. The National Registry of Hospital Discharges was used, using the International Classification of Diseases, 10th revision coding list. RESULTS: Of the 117,694 adults hospitalized during this period, 491 were SOTR: kidney 390 (79.4%), liver 59 (12%), lung 27 (5.5%), and heart 19 (3.9%). Overall, the mortality of SOTR was 13.8%. After adjustment for baseline characteristics, SOTR was not associated with higher mortality risk (odds ratio [OR] = 0.79, 95% confidence interval [CI] 0.60-1.03). However, lung transplantation was an independent factor related to mortality (OR = 3.26, 95% CI 1.33-7.43), while kidney, liver, and heart transplantation were not. Being a lung transplant recipient was the strongest prognostic factor in SOT patients (OR = 5.12, 95% CI 1.88-13.98). CONCLUSION: This nationwide study supports that the COVID-19 mortality rate in SOTR in Spain during 2020 did not differ from the general population, except for lung transplant recipients, who presented worse outcomes. Efforts should be focused on the optimal management of lung transplant recipients with COVID-19.

2.
Vox Sang ; 118(4): 296-300, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2234972

ABSTRACT

BACKGROUND AND OBJECTIVES: There is a concern about a possible deleterious effect of pathogen reduction (PR) with methylene blue (MB) on the function of immunoglobulins of COVID-19 convalescent plasma (CCP). We have evaluated whether MB-treated CCP is associated with a poorer clinical response compared to other inactivation systems at the ConPlas-19 clinical trial. MATERIALS AND METHODS: This was an ad hoc sub-study of the ConPlas-19 clinical trial comparing the proportion of patients transfused with MB-treated CCP who had a worsening of respiration versus those treated with amotosalen (AM) or riboflavin (RB). RESULTS: One-hundred and seventy-five inpatients with SARS-CoV-2 pneumonia were transfused with a single CCP unit. The inactivation system of the CCP units transfused was MB in 90 patients (51.4%), RB in 60 (34.3%) and AM in 25 (14.3%). Five out of 90 patients (5.6%) transfused with MB-treated CCP had worsening respiration compared to 9 out of 85 patients (10.6%) treated with alternative PR methods (p = 0.220). Of note, MB showed a trend towards a lower rate of respiratory progressions at 28 days (risk ratio, 0.52; 95% confidence interval, 0.18-1.50). CONCLUSION: Our data suggest that MB-treated CCP does not provide a worse clinical outcome compared to the other PR methods for the treatment of COVID-19.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , COVID-19 Serotherapy , Immunization, Passive/methods , Methylene Blue/pharmacology , Methylene Blue/therapeutic use , SARS-CoV-2 , Treatment Outcome
4.
J Clin Med ; 12(3)2023 Jan 21.
Article in English | MEDLINE | ID: covidwho-2200432

ABSTRACT

OBJECTIVE: We aim to describe the safety and efficacy of sotrovimab in severe cases of COVID-19 in immunocompromised hosts. METHODS: We used a retrospective multicenter cohort including immunocompromised hospitalized patients with severe COVID-19 treated with sotrovimab between October 2021 and December 2021. RESULTS: We included 32 patients. The main immunocompromising conditions were solid organ transplantation (46.9%) and hematological malignancy (37.5%). Seven patients (21.9%) had respiratory progression: 12.5% died and 9.4% required mechanical ventilation. Patients treated within the first 14 days of their symptoms had a lower progression rate: 12.0% vs. 57.1%, p = 0.029. No adverse event was attributed to sotrovimab. CONCLUSIONS: Sotrovimab was safe and may be effective in its use for immunocompromised patients with severe COVID-19. More studies are needed to confirm these preliminary data.

5.
Viruses ; 14(8)2022 07 26.
Article in English | MEDLINE | ID: covidwho-1957459

ABSTRACT

We aimed to evaluate the clinical outcome of Systemic Autoimmune Diseases (SADs) patients hospitalized with COVID-19 in Spain, before the introduction of SARS-CoV-2 vaccines. A nationwide, retrospective and observational analysis of the patients admitted during 2020, based on the ICD10 codes in the National Registry of Hospital Discharges, was performed. Among 117,694 patients, only 892 (0.8%) presented any type of SAD before COVID-19-related admission: Sjogren's Syndrome constituted 25%, Systemic Vasculitides 21%, Systemic Lupus Erythematosus 19%, Sarcoidosis 17%, Systemic Sclerosis 11%, Mixed and Undifferentiated Connective Tissue Disease 4%, Behçet's Disease 4% and Inflammatory Myopathies 2%. The in-hospital mortality rate was higher in SAD individuals (20% vs. 16%, p < 0.001). After adjustment by baseline conditions, SADs were not associated with a higher mortality risk (OR = 0.93, 95% CI 0.78-1.11). Mortality in the SADs patients was determined by age (OR = 1.05, 95% CI 1.04-1.07), heart failure (OR = 1.67, 95% CI 1.10-2.49), chronic kidney disease (OR = 1.29, 95% CI 1.05-1.59) and liver disease (OR = 1.97, 95% CI 1.13-3.44). In conclusion, the higher COVID-19 mortality rate seen in SADs patients hospitalized in Spain in 2020 was related to the higher burden of comorbidities, secondary to direct organ damage and sequelae of their condition. Whilst further studies should evaluate the impact of baseline immunosuppression on COVID-19 outcomes in this population, efforts should be focused on the optimal management of SAD to minimize the impact of the organ damage that has been shown to determine COVID-19 prognosis.


Subject(s)
Autoimmune Diseases , COVID-19 , Lupus Erythematosus, Systemic , Autoimmune Diseases/epidemiology , COVID-19/epidemiology , COVID-19 Vaccines , Humans , Registries , Retrospective Studies , SARS-CoV-2 , Spain/epidemiology
6.
J Fungi (Basel) ; 8(5)2022 Apr 27.
Article in English | MEDLINE | ID: covidwho-1809978

ABSTRACT

Severely ill COVID-19 patients are at high risk of nosocomial infections. The aim of the study was to describe the characteristics of candidemia during the pre-pandemic period (January 2019-February 2020) compared to the pandemic period (March 2020-September 2021). Antifungal susceptibilities were assessed using the EUCAST E.Def 7.3.2 broth dilution method. Fluconazole-resistant C. parapsilosis isolates (FRCP) were studied for sequencing of the ERG11 gene. The incidence of candidemia and C. parapsilosis bloodstream infection increased significantly in the pandemic period (p = 0.021). ICU admission, mechanical ventilation, parenteral nutrition and corticosteroids administration were more frequent in patients with candidemia who had been admitted due to COVID-19. Fifteen cases of FRCP fungemia were detected. The first case was recorded 10 months before the pandemic in a patient transferred from another hospital. The incidence of FRCP in patients admitted for COVID-19 was 1.34 and 0.16 in all other patients (p < 0.001). ICU admission, previous Candida spp. colonization, arterial catheter use, parenteral nutrition and renal function replacement therapy were more frequent in patients with candidemia due to FRCP. All FRCP isolates showed the Y132F mutation. In conclusion, the incidence of candidemia experienced an increase during the COVID-19 pandemic and FRCP fungemia was more frequent in patients admitted due to COVID-19.

7.
Mycoses ; 65(5): 541-550, 2022 May.
Article in English | MEDLINE | ID: covidwho-1714274

ABSTRACT

BACKGROUND: COVID-19-associated pulmonary aspergillosis (CAPA) is a major complication of critically ill COVID-19 patients, with a high mortality rate and potentially preventable. Thus, identifying patients at high risk of CAPA would be of great interest. We intended to develop a clinical prediction score capable of stratifying patients according to the risk for CAPA at ICU admission. METHODS: Single centre retrospective case-control study. A case was defined as a patient diagnosed with CAPA according to 2020 ECMM/ISHAM consensus criteria. 2 controls were selected for each case among critically ill COVID-19 patients. RESULTS: 28 CAPA patients and 56-matched controls were included. Factors associated with CAPA included old age (68 years vs. 62, p = .033), active smoking (17.9% vs. 1.8%, p = .014), chronic respiratory diseases (48.1% vs. 26.3%, p = .043), chronic renal failure (25.0% vs. 3.6%, p = .005), chronic corticosteroid treatment (28.6% vs. 1.8%, p < .001), tocilizumab therapy (92.9% vs. 66.1%, p = .008) and high APACHE II at ICU admission (median 13 vs. 10 points, p = .026). A score was created including these variables, which showed an area under the receiver operator curve of 0.854 (95% CI 0.77-0.92). A punctuation below 6 had a negative predictive value of 99.6%. A punctuation of 10 or higher had a positive predictive value of 27.9%. CONCLUSION: We present a clinical prediction score that allowed to stratify critically ill COVID-19 patients according to the risk for developing CAPA. This CAPA score would allow to target preventive measures. Further evaluation of the score, as well as the utility of these targeted preventive measures, is needed.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Aged , COVID-19/complications , Case-Control Studies , Critical Illness , Humans , Intensive Care Units , Invasive Pulmonary Aspergillosis/complications , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/drug therapy , Pulmonary Aspergillosis/complications , Retrospective Studies , Risk Factors , SARS-CoV-2
8.
Clin Infect Dis ; 74(10): 1786-1794, 2022 05 30.
Article in English | MEDLINE | ID: covidwho-1713622

ABSTRACT

BACKGROUND: Our objective is to describe the presentation and complications, including relapses, of coronavirus disease 2019 (COVID-19) in patients under anti-CD20 treatments. In addition, to describe viral clearance and determine the safety of reintroducing anti-CD20 treatment. METHODS: Retrospective cohort study of 422 patients under anti-CD20 treatment that was administered from 1 January 2019 to 31 December 2020. RESULTS: Fifty-seven patients were diagnosed with COVID-19 (13.5%). Twenty-five patients (43.9%) required hospital admission. Five patients died (8.8%), and 10 developed severe COVID-19 and acute respiratory distress syndrome. Mortality rate was higher among patients infected during the first 3 months following the last dose of anti-CD20 (14.7% vs 0%, P = .046). The median time of persistence of positive reverse transcription polymerase chain reaction (RT-PCR) was 22 days (IQR 13-40).Nine out of 52 survivors (17.3%) presented relapses. All of them received the last dose of anti-CD20 less than 6 months before the COVID-19 episode. Clinical presentation was fever (n = 8; 88.9%), dyspnea (n = 7; 77.8%), cough (n = 7; 77.8%), worsening of previous infiltrates (n = 5; 55.6%) and new pulmonary infiltrates (n = 8; 88.9%). An increase in lymphocytes with CD4/CD8 ratio inversion was observed in all cases. Among the 25 patients who resumed anti-CD20 drug, 4 (16.0%) presented relapses vs 5/28 among those who did not (17.9%), (P = .857). CONCLUSIONS: Patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the 6 months after anti-CD20 administration had a worse outcome and a higher mortality rate. The duration of infectivity may be longer. Relapses of COVID-19 occurred in more than 15% and were associated with viral replication. Once the infection is resolved, it is safe to restart treatment with anti-CD20.


Subject(s)
Antineoplastic Agents , COVID-19 , Antibodies, Monoclonal/therapeutic use , Humans , Incidence , Recurrence , Retrospective Studies , SARS-CoV-2
9.
J Fungi (Basel) ; 8(2)2022 Feb 06.
Article in English | MEDLINE | ID: covidwho-1708251

ABSTRACT

Introduction: Cytomegalovirus (CMV) infection is a well-known factor associated with invasive aspergillosis in immunocompromised hosts. However, its association with COVID-19-associated pulmonary aspergillosis (CAPA) has not been described. We aimed to examine the possible link between CMV replication and CAPA occurrence. Methods: A single-center, retrospective case-control study was conducted. A case was defined as a patient diagnosed with CAPA according to 2020 ECMM/ISHAM consensus criteria. Two controls were selected for each case among critically ill COVID-19 patients. Results: In total, 24 CAPA cases were included, comprising 14 possible CAPA and 10 probable CAPA. Additionally, 48 matched controls were selected. CMV replication was detected more frequently in CAPA than in controls (75.0% vs. 35.4%, p = 0.002). Probable CMV end-organ disease was more prevalent in CAPA (20.8% vs. 4.2%, p = 0.037). After adjusting for possible confounding factors, CMV replication persisted strongly associated with CAPA (OR 8.28 95% CI 1.90-36.13, p = 0.005). Among 11 CAPA cases with CMV PCR available prior to CAPA, in 9 (81.8%) cases, CMV replication was observed prior to CAPA diagnosis. Conclusions: Among critically ill COVID-19 patients, CMV replication was associated with CAPA and could potentially be considered a harbinger of CAPA. Further studies are needed to confirm this association.

10.
Int J Infect Dis ; 116: 339-343, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1683188

ABSTRACT

OBJECTIVES: The aim of the study was to analyze the mortality and characteristics of deceased patients with COVID-19 during the first year of the pandemic. METHODS: All admissions owing to COVID-19 at a tertiary hospital in Madrid were analyzed. Three waves were considered: March 2020 to June 2020, July 2020 to November 2020, and December 2020 to April 2021. RESULTS: A total of 3,676 patients were identified. Among inpatients, no differences regarding age, sex, length of admission, or mortality were found between the 3 waves (p >0.05). The overall mortality rate was 12.9%. Among deceased patients, the median age was 82 years and the median Charlson Comorbidity Index was 6. Considering the main predictors for mortality by COVID-19 (age, sex, and concomitant comorbidities), only patients with previous lung disease were more prevalent in the third period (p <0.01). Finally, higher intensive care unit admission rates, a lower rate of patients coming from nursing homes, and a lower rate of patients with dementia were noted in the third period (p <0.05) among deceased patients. CONCLUSION: One year after the onset of the pandemic, the mortality rate of hospitalized patients and the profile of non-survivors have not changed significantly. In the absence of vaccine benefits, advanced age and multiple pathologies are uniform characteristics of non-survivors.


Subject(s)
COVID-19 , Aged, 80 and over , COVID-19/prevention & control , Comorbidity , Hospital Mortality , Humans , Pandemics/prevention & control , Retrospective Studies , SARS-CoV-2 , Vaccination
11.
J Clin Invest ; 131(20)2021 10 15.
Article in English | MEDLINE | ID: covidwho-1626086

ABSTRACT

BACKGROUNDPassive immunotherapy with convalescent plasma (CP) is a potential treatment for COVID-19. Evidence from controlled clinical trials is inconclusive.METHODSWe conducted a randomized, open-label, controlled clinical trial at 27 hospitals in Spain. Patients had to be admitted for COVID-19 pneumonia within 7 days from symptom onset and not on mechanical ventilation or high-flow oxygen devices. Patients were randomized 1:1 to treatment with CP in addition to standard of care (SOC) or to the control arm receiving only SOC. The primary endpoint was the proportion of patients in categories 5 (noninvasive ventilation or high-flow oxygen), 6 (invasive mechanical ventilation or extracorporeal membrane oxygenation [ECMO]), or 7 (death) at 14 days. Primary analysis was performed in the intention-to-treat population.RESULTSBetween April 4, 2020, and February 5, 2021, 350 patients were randomly assigned to either CP (n = 179) or SOC (n = 171). At 14 days, proportion of patients in categories 5, 6, or 7 was 11.7% in the CP group versus 16.4% in the control group (P = 0.205). The difference was greater at 28 days, with 8.4% of patients in categories 5-7 in the CP group versus 17.0% in the control group (P = 0.021). The difference in overall survival did not reach statistical significance (HR 0.46, 95% CI 0.19-1.14, log-rank P = 0.087).CONCLUSIONCP showed a significant benefit in preventing progression to noninvasive ventilation or high-flow oxygen, invasive mechanical ventilation or ECMO, or death at 28 days. The effect on the predefined primary endpoint at 14 days and the effect on overall survival were not statistically significant.TRIAL REGISTRATIONClinicaltrials.gov, NCT04345523.FUNDINGGovernment of Spain, Instituto de Salud Carlos III.


Subject(s)
COVID-19/therapy , SARS-CoV-2 , Aged , COVID-19/mortality , COVID-19/physiopathology , Combined Modality Therapy , Disease Progression , Female , Hospitalization , Humans , Immunization, Passive/adverse effects , Kaplan-Meier Estimate , Male , Middle Aged , Odds Ratio , Pandemics , Spain/epidemiology , Treatment Outcome , COVID-19 Serotherapy
12.
Curr Med Res Opin ; 38(4): 501-510, 2022 04.
Article in English | MEDLINE | ID: covidwho-1624967

ABSTRACT

BACKGROUND: The individual influence of a variety of comorbidities on COVID-19 patient outcomes has already been analyzed in previous works in an isolated way. We aim to determine if different associations of diseases influence the outcomes of inpatients with COVID-19. METHODS: Retrospective cohort multicenter study based on clinical practice. Data were taken from the SEMI-COVID-19 Registry, which includes most consecutive patients with confirmed COVID-19 hospitalized and discharged in Spain. Two machine learning algorithms were applied in order to classify comorbidities and patients (Random Forest -RF algorithm, and Gaussian mixed model by clustering -GMM-). The primary endpoint was a composite of either, all-cause death or intensive care unit admission during the period of hospitalization. The sample was randomly divided into training and test sets to determine the most important comorbidities related to the primary endpoint, grow several clusters with these comorbidities based on discriminant analysis and GMM, and compare these clusters. RESULTS: A total of 16,455 inpatients (57.4% women and 42.6% men) were analyzed. According to the RF algorithm, the most important comorbidities were heart failure/atrial fibrillation (HF/AF), vascular diseases, and neurodegenerative diseases. There were six clusters: three included patients who met the primary endpoint (clusters 4, 5, and 6) and three included patients who did not (clusters 1, 2, and 3). Patients with HF/AF, vascular diseases, and neurodegenerative diseases were distributed among clusters 3, 4 and 5. Patients in cluster 5 also had kidney, liver, and acid peptic diseases as well as a chronic obstructive pulmonary disease; it was the cluster with the worst prognosis. CONCLUSION: The interplay of several comorbidities may affect the outcome and complications of inpatients with COVID-19.


Subject(s)
COVID-19 , COVID-19/epidemiology , Comorbidity , Female , Hospitalization , Humans , Machine Learning , Male , Retrospective Studies , Risk Factors , SARS-CoV-2
13.
BMC Infect Dis ; 21(1): 1144, 2021 Nov 08.
Article in English | MEDLINE | ID: covidwho-1505642

ABSTRACT

BACKGROUND: Since December 2019, the COVID-19 pandemic has changed the concept of medicine. This work aims to analyze the use of antibiotics in patients admitted to the hospital due to SARS-CoV-2 infection. METHODS: This work analyzes the use and effectiveness of antibiotics in hospitalized patients with COVID-19 based on data from the SEMI-COVID-19 registry, an initiative to generate knowledge about this disease using data from electronic medical records. Our primary endpoint was all-cause in-hospital mortality according to antibiotic use. The secondary endpoint was the effect of macrolides on mortality. RESULTS: Of 13,932 patients, antibiotics were used in 12,238. The overall death rate was 20.7% and higher among those taking antibiotics (87.8%). Higher mortality was observed with use of all antibiotics (OR 1.40, 95% CI 1.21-1.62; p < .001) except macrolides, which had a higher survival rate (OR 0.70, 95% CI 0.64-0.76; p < .001). The decision to start antibiotics was influenced by presence of increased inflammatory markers and any kind of infiltrate on an x-ray. Patients receiving antibiotics required respiratory support and were transferred to intensive care units more often. CONCLUSIONS: Bacterial co-infection was uncommon among COVID-19 patients, yet use of antibiotics was high. There is insufficient evidence to support widespread use of empiric antibiotics in these patients. Most may not require empiric treatment and if they do, there is promising evidence regarding azithromycin as a potential COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , Anti-Bacterial Agents/therapeutic use , Humans , Pandemics , SARS-CoV-2
14.
Infect Dis Ther ; 10(4): 2735-2748, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1474167

ABSTRACT

INTRODUCTION: SARS-CoV-2 pneumonia is often associated with hyper-inflammation. The cytokine-storm-like is one of the targets of current therapies for coronavirus disease 2019 (COVID-19). High Interleukin-6 (IL6) blood levels have been identified in severe COVID-19 disease, but there are still uncertainties regarding the actual role of anti-IL6 antagonists in COVID-19 management. Our hypothesis was that the use of sarilumab plus corticosteroids at an early stage of the hyper-inflammatory syndrome would be beneficial and prevent progression to acute respiratory distress syndrome (ARDS). METHODS: We randomly assigned (in a 1:1 ratio) COVID-19 pneumonia hospitalized patients under standard oxygen therapy and laboratory evidence of hyper-inflammation to receive sarilumab plus usual care (experimental group) or usual care alone (control group). Corticosteroids were given to all patients at a 1 mg/kg/day of methylprednisolone for at least 3 days. The primary outcome was the proportion of patients progressing to severe respiratory failure (defined as a score in the Brescia-COVID19 scale ≥ 3) up to day 15. RESULTS: A total of 201 patients underwent randomization: 99 patients in the sarilumab group and 102 patients in the control group. The rate of patients progressing to severe respiratory failure (Brescia-COVID scale score ≥ 3) up to day 15 was 16.16% in the Sarilumab group versus 15.69% in the control group (RR 1.03; 95% CI 0.48-2.20). No relevant safety issues were identified. CONCLUSIONS: In hospitalized patients with Covid-19 pneumonia, who were under standard oxygen therapy and who presented analytical inflammatory parameters, an early therapeutic intervention with sarilumab plus standard of care (including corticosteroids) was not shown to be more effective than current standard of care alone. The study was registered at EudraCT with number: 2020-002037-15.

15.
Int J Gen Med ; 13: 1359-1366, 2020.
Article in English | MEDLINE | ID: covidwho-1459325

ABSTRACT

OBJECTIVE: To analyse the rate of occurrence and the clinical variables associated with readmission of patients who had previously been discharged after admission for COVID-19. SETTING: University hospital in Madrid (Spain). PARTICIPANTS: Sixty-one patients (74% male) who presented COVID-19 were readmitted during the 3 weeks after discharge from hospital. INTERVENTIONS: Nested case-control study paired (1:1 ratio) by age, sex and period of admission. OUTCOME MEASURES: Rate of readmission rate of patients discharged after suffering COVID-19 and identification of the clinical variables associated with it. RESULTS: Out of 1368 patients who were discharged during the study period, 61 patients (4.4%) were readmitted. Immunocompromised patients (N=10.2%) were at increased risk for readmission (p=0.04). There was also a trend towards a higher probability of readmission in hypertensive patients (p=0.07). Cases had had a shorter hospital stay and a higher prevalence of fever during the 48 hours prior to discharge. There were no significant differences in oxygen levels measured at admission and discharge by pulse oximetry intra-subject or between the groups. Neutrophil-to-lymphocyte ratio at hospital admission tended to be higher in cases than in controls (p=0.06). Neither glucocorticoids nor anticoagulants prescribed at hospital discharge were associated with a lower readmission rate. Patients who were readmitted due to a thrombotic event (8 patients, 13.1%) presented a higher level of D-dimer at discharge of initial admission. CONCLUSION: The rate of readmission after discharge from hospital for COVID-19 was low. Immunocompromised patients and those presenting with fever during the 48 hours prior to discharge were at greater risk of readmission to hospital.

16.
Sci Rep ; 11(1): 13733, 2021 07 02.
Article in English | MEDLINE | ID: covidwho-1294485

ABSTRACT

To determine the proportion of patients with COVID-19 who were readmitted to the hospital and the most common causes and the factors associated with readmission. Multicenter nationwide cohort study in Spain. Patients included in the study were admitted to 147 hospitals from March 1 to April 30, 2020. Readmission was defined as a new hospital admission during the 30 days after discharge. Emergency department visits after discharge were not considered readmission. During the study period 8392 patients were admitted to hospitals participating in the SEMI-COVID-19 network. 298 patients (4.2%) out of 7137 patients were readmitted after being discharged. 1541 (17.7%) died during the index admission and 35 died during hospital readmission (11.7%, p = 0.007). The median time from discharge to readmission was 7 days (IQR 3-15 days). The most frequent causes of hospital readmission were worsening of previous pneumonia (54%), bacterial infection (13%), venous thromboembolism (5%), and heart failure (5%). Age [odds ratio (OR): 1.02; 95% confident interval (95% CI): 1.01-1.03], age-adjusted Charlson comorbidity index score (OR: 1.13; 95% CI: 1.06-1.21), chronic obstructive pulmonary disease (OR: 1.84; 95% CI: 1.26-2.69), asthma (OR: 1.52; 95% CI: 1.04-2.22), hemoglobin level at admission (OR: 0.92; 95% CI: 0.86-0.99), ground-glass opacification at admission (OR: 0.86; 95% CI:0.76-0.98) and glucocorticoid treatment (OR: 1.29; 95% CI: 1.00-1.66) were independently associated with hospital readmission. The rate of readmission after hospital discharge for COVID-19 was low. Advanced age and comorbidity were associated with increased risk of readmission.


Subject(s)
COVID-19/therapy , Patient Readmission , Age Factors , Aged , Aged, 80 and over , COVID-19/complications , COVID-19/epidemiology , Female , Humans , Male , Middle Aged , Patient Discharge , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification
17.
PLoS One ; 16(5): e0251340, 2021.
Article in English | MEDLINE | ID: covidwho-1223800

ABSTRACT

BACKGROUND: Most patients with COVID-19 receive antibiotics despite the fact that bacterial co-infections are rare. This can lead to increased complications, including antibacterial resistance. We aim to analyze risk factors for inappropriate antibiotic prescription in these patients and describe possible complications arising from their use. METHODS: The SEMI-COVID-19 Registry is a multicenter, retrospective patient cohort. Patients with antibiotic were divided into two groups according to appropriate or inappropriate prescription, depending on whether the patient fulfill any criteria for its use. Comparison was made by means of multilevel logistic regression analysis. Possible complications of antibiotic use were also identified. RESULTS: Out of 13,932 patients, 3047 (21.6%) were prescribed no antibiotics, 6116 (43.9%) were appropriately prescribed antibiotics, and 4769 (34.2%) were inappropriately prescribed antibiotics. The following were independent factors of inappropriate prescription: February-March 2020 admission (OR 1.54, 95%CI 1.18-2.00), age (OR 0.98, 95%CI 0.97-0.99), absence of comorbidity (OR 1.43, 95%CI 1.05-1.94), dry cough (OR 2.51, 95%CI 1.94-3.26), fever (OR 1.33, 95%CI 1.13-1.56), dyspnea (OR 1.31, 95%CI 1.04-1.69), flu-like symptoms (OR 2.70, 95%CI 1.75-4.17), and elevated C-reactive protein levels (OR 1.01 for each mg/L increase, 95% CI 1.00-1.01). Adverse drug reactions were more frequent in patients who received ANTIBIOTIC (4.9% vs 2.7%, p < .001). CONCLUSION: The inappropriate use of antibiotics was very frequent in COVID-19 patients and entailed an increased risk of adverse reactions. It is crucial to define criteria for their use in these patients. Knowledge of the factors associated with inappropriate prescribing can be helpful.


Subject(s)
Anti-Bacterial Agents/adverse effects , COVID-19/pathology , Inappropriate Prescribing/adverse effects , Acute Kidney Injury/etiology , Aged , Anti-Bacterial Agents/administration & dosage , C-Reactive Protein/analysis , COVID-19/complications , COVID-19/virology , Comorbidity , Cough/etiology , Dyspnea/etiology , Female , Fever/etiology , Humans , Logistic Models , Male , Middle Aged , Odds Ratio , Registries , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification
18.
PLoS One ; 16(4): e0250796, 2021.
Article in English | MEDLINE | ID: covidwho-1207638

ABSTRACT

The aim was to analyze the characteristics and predictors of unfavorable outcomes in solid organ transplant recipients (SOTRs) with COVID-19. We conducted a prospective observational cohort study of 210 consecutive SOTRs hospitalized with COVID-19 in 12 Spanish centers from 21 February to 6 May 2020. Data pertaining to demographics, chronic underlying diseases, transplantation features, clinical, therapeutics, and complications were collected. The primary endpoint was a composite of intensive care unit (ICU) admission and/or death. Logistic regression analyses were performed to identify the factors associated with these unfavorable outcomes. Males accounted for 148 (70.5%) patients, the median age was 63 years, and 189 (90.0%) patients had pneumonia. Common symptoms were fever, cough, gastrointestinal disturbances, and dyspnea. The most used antiviral or host-targeted therapies included hydroxychloroquine 193/200 (96.5%), lopinavir/ritonavir 91/200 (45.5%), and tocilizumab 49/200 (24.5%). Thirty-seven (17.6%) patients required ICU admission, 12 (5.7%) suffered graft dysfunction, and 45 (21.4%) died. A shorter interval between transplantation and COVID-19 diagnosis had a negative impact on clinical prognosis. Four baseline features were identified as independent predictors of intensive care need or death: advanced age, high respiratory rate, lymphopenia, and elevated level of lactate dehydrogenase. In summary, this study presents comprehensive information on characteristics and complications of COVID-19 in hospitalized SOTRs and provides indicators available upon hospital admission for the identification of SOTRs at risk of critical disease or death, underlining the need for stringent preventative measures in the early post-transplant period.


Subject(s)
COVID-19/complications , Infections/etiology , Organ Transplantation/adverse effects , Transplant Recipients , Aged , Aged, 80 and over , Critical Care , Female , Hospitalization , Humans , Immunosuppressive Agents/therapeutic use , Male , Middle Aged , Prospective Studies , Risk Factors , Treatment Outcome
19.
Trials ; 22(1): 70, 2021 Jan 20.
Article in English | MEDLINE | ID: covidwho-1067258

ABSTRACT

BACKGROUND: COVID-19 is a respiratory disease caused by a novel coronavirus (SARS-CoV-2) and causes substantial morbidity and mortality. At the time this clinical trial was planned, there were no available vaccine or therapeutic agents with proven efficacy, but the severity of the condition prompted the use of several pharmacological and non-pharmacological interventions. It has long been hypothesized that the use of convalescent plasma (CP) from infected patients who have developed an effective immune response is likely to be an option for the treatment of patients with a variety of severe acute respiratory infections (SARI) of viral etiology. The aim of this study is to assess the efficacy and safety of convalescent plasma in adult patients with severe COVID-19 pneumonia. METHODS/DESIGN: The ConPlas-19 study is a multicenter, randomized, open-label controlled trial. The study has been planned to include 278 adult patients hospitalized with severe COVID-19 infection not requiring mechanical ventilation (invasive or non-invasive). Subjects are randomly assigned in a 1:1 ratio (139 per treatment arm), stratified by center, to receive intravenously administered CP (single infusion) plus SOC or SOC alone, and are to be followed for 30 days. The primary endpoint of the study is the proportion of patients that progress to category 5, 6, or 7 (on the 7-point ordinal scale proposed by the WHO) at day 15. Interim analyses for efficacy and/or futility will be conducted once 20%, 40%, and 60% of the planned sample size are enrolled and complete D15 assessment. DISCUSSION: This clinical trial is designed to evaluate the efficacy and safety of passive immunotherapy with convalescent plasma for the treatment of adult patients hospitalized with COVID-19. The results of this study are expected to contribute to establishing the potential place of CP in the therapeutics for a new viral disease. TRIAL REGISTRATION: ClinicalTrials.gov NCT04345523 . Registered on 30 March, 2020. First posted date: April 14, 2020.


Subject(s)
COVID-19/therapy , SARS-CoV-2/isolation & purification , Adult , COVID-19/diagnosis , Clinical Trials, Phase II as Topic , Female , Hospitalization , Humans , Immunization, Passive/adverse effects , Male , Middle Aged , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Severity of Illness Index , Standard of Care , Treatment Outcome , COVID-19 Serotherapy
20.
Trials ; 21(1): 794, 2020 Sep 16.
Article in English | MEDLINE | ID: covidwho-768595

ABSTRACT

OBJECTIVES: In some patients, acute, life-threatening respiratory injury produced by viruses such as SARS-CoV and other viral pneumonia are associated with an over-exuberant cytokine release. Elevated levels of blood IL-6 had been identified as a one of the risk factors associated with severe COVID-19 disease. Anti-IL6 inhibitors are among the therapeutic armamentarium for preventing the fatal consequences of acute respiratory and multi organ failure in around 20% of the COVID-19 infected patients. At present, their use is prioritized to patients with severe interstitial pneumonia (Brescia-COVID Scale-COVID 2-3) with hyperinflammation as determined by the presence of elevated IL6 and/or d-dimer, or progressive d-dimer increase, in patients who otherwise are subsidiary to ICU admission. However, many uncertainties remain on the actual role of anti-IL6 inhibitors in this setting, and whether current use and timing is the right one. There is the hypothesis that the use of anti-IL6 inhibitors at an earlier state during the hyperinflammatory syndrome would be beneficial and may avoid progressing to ARDS. On the other hand, the standard of care has changed and nowadays the use of corticosteroids has become part of the SOC in the treatment of COVID-19 pneumonia. Our limited experience suggests that better treatment outcomes can be achieved when combining IL6-inhibitors (e.g. sarilumab) with corticosteroids. The aim of the present study is to evaluate if an earlier therapeutic intervention with sarilumab plus SOC (including corticosteroids) may be more effective than current standard of care alone, in preventing progression to respiratory failure in COVID-19 infected patients with interstitial pneumonia. This study will also provide supportive evidence to that provided by currently ongoing studies on the efficacy and safety of sarilumab in this clinical context. TRIAL DESIGN: A phase two multi-center randomised controlled trial (RCT) with two parallel arms (1:1 ratio). PARTICIPANTS: They will be hospitalized patients, of at least 18 years of age, with severe COVID-19 who have positive RT-PCR test and have radiographic evidence of pulmonary infiltrates by imaging or rales/crackles on exam and SpO2 ≤ 94% on room air that requires supplemental oxygen. Patients must present elevation of inflammatory parameters (IL-6 > 40 pg/mL or d-dimer >1.0 mcg/ml) or, alternatively, progressive worsening in at least two of these inflammatory parameters in the prior 24-48h: CRP, LDH, serum ferritin, lymphopenia, or d-dimer. EXCLUSION CRITERIA: high oxygen requirements (including face mask with reservoir, non-invasive mechanical ventilation or high flow nasal cannula, or mechanical ventilation), admission to ICU, pregnancy or lactation, allergy or hypersensitivity to sarilumab or corticoesteroids, immunosuppressive antibody therapy within the past 5 months, AST/ALT values > 10 x ULN, neutropenia (< 0.5 x 109/L), severe thrombocytopenia (< 50 x 109/L), sepsis caused by an alternative pathogen, diverticulitis with risk of perforation or ongoing infectious dermatitis. The study will be conducted in several hospitals in Spain. INTERVENTION AND COMPARATOR: Patients randomised to the experimental arm will receive sarilumab + methylprednisolone plus SOC for COVID-19. Patients included in the control arm will receive methylprednisolone plus SOC for COVID-19. Corticosteroids will be given to all patients at a 1mg/kg/d of methylprednisolone for at least 3 days. Clinical follow-up visits will be performed at 3, 5, and 15 days after treatment randomization. Patients in the control group (SOC group without sarilumab) progressing to Brescia- COVID 2-3 plus inflammatory markers, will be given the option to be rescued with sarilumab at the same doses and, in that case, be included in an open-label phase and be followed up for additional weeks (with visits at 3, 7 and 15 days after sarilumab rescue administration). Patients randomly assigned to sarilumab therapy at baseline progressing to Brescia-COVID 2-3 will be rescued according to local clinical practice protocols. A final follow-up visit will be conducted for all patients at day 29 from randomization, regardless of initial treatment assignment. MAIN OUTCOMES: Primary end point is the proportion of patients progressing to either severe respiratory failure (Brescia-COVID ≥2), ICU admission, or death. RANDOMIZATION: Randomization codes were produced by means of the PROC PLAN of the SAS system, with a 1:1 assignment ratio, stratifying by centre and using blocks multiple of 2 elements. The randomization schedule will be managed through the eCRF in a concealed manner. BLINDING (MASKING): All study drugs will be administered as open label. No blinding methods will be used in this trial. NUMBERS TO BE RANDOMISED (SIMPLE SIZE): The target sample size will be 200 COVID-19 patients, who will be allocated randomly to control arm (100) and treatment arm (100). TRIAL STATUS: Protocol Code: SARTRE Protocol Date: May 05th 2020. Version: 2.0 The study has been approved by the Spanish Competent Authority (AEMPS) as a low intervention clinical trial. Start of recruitment: August, 2020 End of recruitment: May, 2021 TRIAL REGISTRATION: Identifier: EudraCT Number: 2020-002037-15 ; Registration date: 26 May 2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2).


Subject(s)
Antibodies, Monoclonal, Humanized , Betacoronavirus , Coronavirus Infections , Cytokine Release Syndrome/prevention & control , Pandemics , Pneumonia, Viral , Adult , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/adverse effects , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Betacoronavirus/drug effects , Betacoronavirus/isolation & purification , COVID-19 , Clinical Trials, Phase II as Topic , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Cytokine Release Syndrome/immunology , Female , Humans , Male , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Pneumonia, Viral/etiology , Pneumonia, Viral/immunology , Pneumonia, Viral/physiopathology , Randomized Controlled Trials as Topic , Receptors, Interleukin-6/antagonists & inhibitors , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL